O CODEBYTE

CURRICULUM

¢ CODEBYTE

CURRICULUM

Data Structure & Algorithm

e Database Management System

Operating System (OS)

° Object Oriented Programming

° Computer Network

° Interview Preparation

I
I
I
) —

$& CODEBYTE

Data Structure & Algorithm

Course Overview: Data Structures & Algorithms
(DSA) is a fundamental aspect of computer
science essential for writing efficient code.
Mastering DSA is crucial for aspiring software
developers, as it forms the basis of problem-
solving skills required in the industry. Most
companies include DSA in their technical interview
rounds, making it a key component in the
placement process.

Topics Covered:

@ Data Structures & Its Types: Introduction to various data structures, their uses, and
differences.

@® Time & Space Complexity: Analysis of algorithms based on their execution time and
memory usage.

@® Basic Math for DSA: Essential mathematical concepts and techniques for solving
DSA problems.

@ Arrays & LinkedList: Fundamental linear data structures for storing collections of
elements.

@ Strings: Handling and manipulating sequences of characters.

$& CODEBYTE

Stacks & Queues: Abstract data types for managing ordered collections with specific
access rules.

Sorting & Searching Algorithms: Techniques for organizing and retrieving data
efficiently.

Heaps: Specialized tree-based structures that facilitate priority queue operations.

Map & Set: Data structures for storing unique elements and key-value pairs.

Recursion: Technique where a function calls itself to solve smaller instances of the
problem.

Trees: Hierarchical data structures used for representing nested relationships.

Backtracking: Algorithmic technique for solving problems incrementally,
abandoning solutions that fail criteria.

Dynamic Programming: Method for solving complex problems by breaking them
down into simpler subproblems and storing results.

Graphs: Structures for representing and traversing networks of connected nodes.

$& CODEBYTE

Object Oriented Programming

Course Overview: Object-Oriented Programming

(OOP) is essential for creating organized, reusable
code. Mastering OOP is crucial for developers,
forming the foundation of modern software
practices. Understanding concepts like
encapsulation, inheritance, and polymorphism is
key for robust applications and job placements.
This course covers core OOP principles, design
patterns, and practical implementations for a
successful software development career.

Topics Covered:

Class and Objects: Blueprints for creating objects with shared attributes and behaviors
in OOP.

Feature/Characteristics of OOPs: Includes encapsulation, inheritance,
polymorphism, and abstraction for organized and reusable code.

Variable Scopes: Determines the accessibility of variables within different parts of a
program.

Static (Variables, Functions, Objects): Elements that persist across instances,
shared by all objects of a class.

Encapsulation: Bundles data and methods into a single unit, hiding internal details and
exposing a public interface.

$& CODEBYTE

Polymorphism: Allows objects to be treated as instances of their parent class,
enabling flexibility in method implementation.

Inheritance (Type and Mode): Enables classes to inherit properties and behaviors from
parent classes, supporting code reusability.

Virtual (Functions and Class): Functions or classes marked as virtual can be overridden
by subclasses, facilitating dynamic binding.

Friend Function and Friend Class: Allows external functions or classes to access
private and protected members of a class.

Call by Value, Reference: Methods of passing arguments to functions, either by
copying values or passing references for efficiency.

This Pointer: Refers to the current instance of a class, enabling access to its own
members within member functions.

Exception Handling: Mechanism for handling errors and exceptional situations
gracefully during program execution.

Constructor and Destructor: Special methods for initializing and cleaning up
objects, respectively, in OOP languages.

Reference Variable: Variable that holds the memory address of another variable,
facilitating efficient memory usage.

Abstraction: Hides complex implementation details, providing a simplified
interface for interacting with objects.

$& CODEBYTE

Database Management System

Course Overview: Database Management Systems
(DBMS) are a core component of computer
science, crucial for the effective storage, retrieval,
and management of data. Understanding DBMS is
essential for aspiring software developers as it
underpins the ability to build and maintain robust
applications. Proficiency in DBMS is often
assessed in technical interviews, making it a
critical skill for the placement process.

Topics Covered:

@® DBMS Introduction | Set 1: Overview of the basics and significance of Database
Management Systems.

@® DBMS Introduction | Set 2 (3-Tier Architecture): Explanation of the 3-tier
architecture model in DBMS, detailing its layers and functions.

@® DBMS Architecture 2-level 3-level: Comparison and discussion of 2-level and 3-level
DBMS architectures.

@® Need For DBMS: Reasons why DBMS is essential for efficient data management and
organizational operations.

@ Data Abstraction and Data Independence: Concepts that allow for the simplification of
database design and protection from changes in data structure.

$& CODEBYTE

Database Objects: Description of various objects in a database, such as tables, views,
indexes, and sequences.

Disadvantages of DBMS: Examination of potential drawbacks and limitations of using a
DBMS.

ER Model Enhanced: Overview of the Enhanced Entity-Relationship model, which
includes additional concepts for more complex database designs.

ER Model: Introduction to the Entity-Relationship model used for database design to
visually represent data relationships.

Minimization of ER Diagram: Techniques for simplifying ER diagrams while
preserving their essential information.

ER Model: Generalization, Specialization and Aggregation: Explanation of advanced
ER concepts for handling hierarchical and complex relationships.

Relational Model and CODD Rules: Overview of the relational database model and
the foundational rules defined by E.F. Codd.

Relational Model: Discussion of the relational model structure, where data is
organized into tables (relations).

Keys in Relational Model (Candidate, Super, Primary, Alternate and Foreign):
Description of different types of keys used to uniquely identify and relate data in
a relational model.

Number of possible Superkeys: Explanation of the concept and calculation of all
possible superkeys in a relational schema.

Anomalies in Relational Model: Overview of potential issues (anomalies) in
relational databases, such as redundancy and update anomalies.

Mapping from ER Model to Relational Model: Process of converting an ER
diagram into a relational schema.

$& CODEBYTE

Database Objects: Description of various objects in a database, such as tables, views,
indexes, and sequences.

Strategies for Schema Design: Techniques for creating efficient and scalable database
schemas.

Schema Integration: Methods for merging different database schemas into a unified
schema.

Introduction to Relational Algebra: Basics of relational algebra, the theoretical
foundation of relational databases.

Basic Operators: Fundamental relational algebra operations like selection,
projection, union, and difference.

Extended Operators: Advanced relational algebra operations such as join, intersection,
and division.

Inner Join vs Outer Join: Comparison of inner join, which returns matching rows, and
outer join, which includes non-matching rows as well.

Join Operation vs Nested Query: Differences between using join operations and
nested queries to retrieve related data.

DBMS | Tuple Relational Calculus: Introduction to a non-procedural query
language based on specifying properties of desired results.

Introduction to Normal Forms: Overview of database normalization and the
different normal forms.

Minimum Relations Satisfying INF: Criteria for ensuring a database relation
meets the First Normal Form requirements.

The Problem of Redundancy in Database: Issues caused by redundant data in
databases, such as inconsistency and inefficiency.

$& CODEBYTE

How to Find the Highest Normal Form of a Relation: Steps to determine the highest
normal form a database relation satisfies.

Domain-Key Normal Form: Explanation of a normal form that ensures minimal
redundancy based on domain and key constraints.

Introduction of 4th and 5th Normal Form: Overview of Fourth and Fifth Normal Forms,
addressing multi-valued dependencies and join dependencies.

Denormalization in Databases: Concept and practices of denormalization to improve
database performance at the cost of redundancy.

DBMS | Data Replication: Techniques and benefits of replicating data across multiple
database systems for reliability and accessibility.

Introduction to Transactions and Concurrency Control: Basics of database
transactions and methods to ensure consistency and isolation in concurrent
environments.

ACID Properties: Fundamental principles ensuring reliable transactions in
databases: Atomicity, Consistency, Isolation, Durability.

Concurrency Control - Introduction: Overview of techniques to manage
simultaneous database operations without conflicts.

Implementation of Locking in DBMS: Methods for enforcing locks to manage
access to database resources.

Concurrency Control Protocols - Lock Based Protocol: Protocols using locks to
ensure proper transaction sequencing and isolation.

Introduction to TimeStamp and Deadlock Prevention Schemes: Methods using
timestamps to order transactions and prevent deadlocks.

Dirty Read in SQL: Concept where a transaction reads data that has not yet been
committed, potentially causing inconsistencies.

$& CODEBYTE

HTypes of Schedules: Different ways of ordering transactions to ensure correctness
and consistency in databases.

Transaction Isolation Levels in DBMS: Various levels of transaction isolation to control
visibility of changes between transactions.

Database Recovery Techniques: Methods to restore a database to a consistent state
after a failure.

Starvation in DBMS: A situation where a transaction is perpetually delayed due to
resource contention.

Starvation in DBMS: A situation where a transaction is perpetually delayed due to
resource contention.

DBMS | OLAP vs OLTP: Comparison of Online Analytical Processing (OLAP) for
complex queries and Online Transaction Processing (OLTP) for routine transactions.

Types of OLAP Systems: Various OLAP systems including MOLAP, ROLAP, and
HOLAP, tailored for different analytical needs.

Indexing and its Types: Overview of database indexing techniques to improve
query performance.

Bitmap Indexing: A type of indexing that uses bitmaps for efficient query
processing in large databases.

Inverted Index: Index structure commonly used in search engines to map content
to its locations in a database.

SQL Queries on Clustered and Non-Clustered Indexes: Differences and usage of
SQL queries on clustered and non-clustered indexes for performance
optimization.

SQL | Tutorials: Educational materials and tutorials to learn and master SQL.

Quiz on SQL: Assessments to test and reinforce understanding of SQL concepts
and queries.

$& CODEBYTE

Operating System

Course Overview: This course delves into the core
principles of Operating Systems (0OS), covering
process management, memory allocation, file
systems, and system security. It equips students
with the essential knowledge to understand and
develop efficient OS functionalities, laying a
strong foundation for careers Iin software
development and system administration

Topics Covered:

@ Introduction of Operating System: Fundamentals of managing hardware and software
resources within a computing environment.

@ Types of Operating Systems: Classification based on usage, such as single-user,
multi-user, real-time, and embedded systems.

@® Functions of Operating System: Management of resources like memory, CPU, and
peripherals, alongside providing an interface for user interaction.

@ Real-time systems: Operating systems designed to process data in real-time,
meeting strict timing constraints for critical applications.

@ Tasks in Real-Time Systems: Handling time-sensitive processes with precise timing
requirements, ensuring timely execution.

$& CODEBYTE

Difference between multitasking, multithreading, and multiprocessing: Various
approaches to concurrent execution, distinguished by their handling of multiple tasks
or threads.

Types of computer memory (RAM and ROM): Storage mediums for temporary data
access (RAM) and permanent data retention (ROM).

Difference between 32-bit and 64-bit operating systems: Differing memory addressing
capabilities, affecting system performance and software compatibility.

What happens when we turn on a computer?: Initialization process involving power-on
self-test (POST), bootloader execution, and loading the operating system.

Boot Block: Initial segment of a storage device containing bootloader code for
system startup.

Microkernel: Modular approach to kernel design, delegating essential functions while
keeping core services minimal.

Kernel 1/0 Subsystem (I/0 System): Component responsible for managing input
and output operations between software and hardware.

Monolithic Kernel and key differences from Microkernel: Integrated kernel
design with all essential services bundled, contrasting with modular microkernel
architecture.

Introduction of System Call: Mechanism for user-level programs to request
services from the operating system kernel

Privileged and Non-Privileged Instructions: Instructions categorized based on
their access to system resources, with privileged instructions reserved for
kernel-level operations.

Process | (Introduction and different states): Overview of processes in an
operating system and their various states such as new, ready, running, waiting,
and terminated.

States of a process: Detailed explanation of each state a process can be in during
its lifecycle.

Process Table and Process Control Block (PCB): Data structures used by the
operating system to manage processes and store their information.

$& CODEBYTE

Process Scheduler: Component responsible for selecting processes from the ready
queue for execution on the CPU.

CPU Scheduling: Techniques for efficiently allocating CPU resources to processes.

Preemptive and Non-Preemptive Scheduling: Different approaches to CPU scheduling
where processes can either be interrupted or allowed to run until completion.

Measure the time spent in context switch?: Evaluating the time taken to save and
restore the state of processes during context switches.

Difference between dispatcher and scheduler: Distinction between components
responsible for context switching and process selection.

FCFS Scheduling | Set 1 and Set 2: First-Come-First-Serve scheduling algorithm and
its variations.

Convoy Effect in Operating Systems: Phenomenon where short processes get
stuck behind long processes in a scheduling queue, causing inefficient resource
utilization

Belady’s Anomaly: Occurrence where increasing the number of available frames
in memory for page replacement algorithms leads to more page faults.

Shortest Job First (SJF) scheduling | Set 1 (Non-preemptive): Scheduling
algorithm that selects the shortest job next for execution.

Program for Shortest Job First (SJF) scheduling | Set 2 (Preemptive):
Implementation of preemptive SJF scheduling in code.

Shortest Job First scheduling with predicted burst time: Enhancing SJF
scheduling by predicting the next CPU burst time for processes.

Longest Remaining Time First (LRTF) Program and algorithm: Variant of SJF
where the process with the longest remaining time is selected for execution.

Round Robin scheduling: Time-sharing scheduling algorithm where each process
is allocated a fixed time slice.

$& CODEBYTE

Selfish Round Robin Scheduling: Variant of Round Robin scheduling where processes
attempt to maximize their CPU allocation.

Round Robin Scheduling with different arrival times: Implementing Round Robin
scheduling with variations in process arrival times.

Priority Scheduling: Scheduling algorithm where processes with higher priorities are
given preference for CPU allocation.

Program for Preemptive Priority CPU Scheduling: Implementation of preemptive
priority scheduling in code.

Priority Scheduling with different arrival time - Set 2: Priority scheduling
implementation considering variations in process arrival times.

Starvation and Aging in Operating Systems: Issues related to processes not getting
sufficient CPU time and aging mechanisms to mitigate starvation.

Highest Response Ratio Next (HRRN) Scheduling: Scheduling algorithm that
selects the process with the highest response ratio for execution.

Multilevel Queue Scheduling: Scheduling algorithm that categorizes processes
into multiple queues based on their priority.

Multilevel Feedback Queue Scheduling: Extension of multilevel queue
scheduling with the ability to move processes between queues based on their
behavior.

Process Synchronization | Introduction and Set 2: Techniques to coordinate the
execution of multiple processes to avoid race conditions and ensure data
consistency.

Critical Section: Code segment where shared resources are accessed and must
be executed atomically to prevent race conditions.

Inter Process Communication: Mechanisms for processes to exchange data and
synchronize their actions.

Interprocess Communication: Methods: Different techniques for achieving
interprocess communication, such as shared memory, message queues, and
signals.

$& CODEBYTE

IPC through shared memory: Sharing data between processes using a common
memory area.

IPC using Message Queues: Communication between processes via message passing
using queues.

Message-based Communication in IPC (inter-process communication): Exchanging
messages between processes to facilitate communication.

Communication between two processes using signals in C: Interprocess
communication in C programming using signals.

Semaphores in operating system: Synchronization primitives used to control access
to shared resources and prevent race conditions.

Mutex vs. Semaphore: Synchronization primitives used to control access to shared
resources, with mutex allowing only one thread at a time and semaphore permitting a
specified number of concurrent accesses.

Process Synchronization | Monitors: High-level synchronization construct allowing
mutual exclusion and condition synchronization within concurrent processes.

Dekker’s algorithm: Algorithm for mutual exclusion among multiple processes
without requiring hardware support.

Producer-Consumer Problem using Semaphores | Set 1: Synchronization problem
involving producers producing data and consumers consuming it using
semaphores..

Dining Philosopher Problem Using Semaphores: Classical synchronization
problem involving multiple philosophers sharing a limited number of resources
(chopsticks).

Dining-Philosophers Solution Using Monitors: Solution to the dining philosopher
problem using monitor-based synchronization.

Readers-Writers Problem | Set 1 (Introduction and Readers Preference Solution):
Synchronization problem involving multiple readers and writers accessing a
shared resource, with preference given to readers.

Reader-Writers solution using Monitors: Solution to the readers-writers problem
using monitor-based synchronization.

$& CODEBYTE

Sleeping Barber problem: Synchronization problem modeling a barber shop where a
barber serves customers who arrive and wait if the barber is busy.

Lock variable synchronization mechanism: Technique using lock variables to implement
mutual exclusion and ensure thread safety.

Interprocess Communication: Methods: Various mechanisms for communication
between processes, including shared memory, message passing, and semaphores.

Deadlock Introduction: Situation in which two or more processes are unable to proceed
because each is waiting for the other to release a resource.

Deadlock Detection And Recovery: Techniques for identifying deadlocks and
recovering from them by terminating or preempting processes.

Deadlock, Starvation, and Livelock: Concepts related to resource contention, where
deadlock involves processes waiting indefinitely, starvation occurs when a process is
perpetually denied resources, and livelock involves processes constantly changing
their states without making progress.

Deadlock Prevention And Avoidance: Strategies for preventing deadlocks by
ensuring that at least one of the necessary conditions (mutual exclusion, hold and
wait, no preemption, circular wait) does not hold.

Banker’s Algorithm: Resource allocation algorithm ensuring that processes do
not enter unsafe states by checking the safety of allocating resources.

Resource Allocation Graph (RAG): Graphical representation of resource
allocation and request relationships among processes and resources.

Methods of resource allocation to processes by operating system: Techniques
for distributing resources among processes, including banker's algorithm,
resource allocation graphs, and priority-based allocation.

Program for Banker’s Algorithm: Implementation of the banker's algorithm in
code to prevent deadlock.

Banker’s Algorithm: Print all the safe state (or safe sequences): Algorithm to
identify and print all safe sequences of resource allocations.

Deadlock detection algorithm: Algorithm for identifying the presence of
deadlocks in a system.

$& CODEBYTE

Program for Deadlock free condition in Operating System: Implementation to ensure
that a system remains deadlock-free.

Operating System | Thread: Lightweight processes sharing the same memory space and
resources, allowing for concurrent execution.

Threads and its types: Different types of threads including user-level and kernel-level
threads.

Operating System | User Level thread Vs Kernel Level thread: Distinction between
threads managed by the user-level thread library and those managed by the kernel.

Process-based and Thread-based Multitasking: Comparison of multitasking
approaches based on processes and threads.

Multi-threading models: Various models for implementing multithreading, such as
many-to-one, one-to-one, and many-to-many.

Benefits of Multithreading: Advantages of multithreading including improved
responsiveness, resource utilization, and parallelism.

Zombie Processes and their Prevention: Processes that have completed
execution but still have an entry in the process table, and measures to prevent
them.

Maximum number of Zombie process a system can handle: Maximum number of
zombie processes a system can accommodate before encountering issues.

Operating System | Remote Procedure call (RPC): Mechanism for interprocess
communication where a process can execute code in another address space.

Memory Hierarchy Design and its Characteristics: Organization of memory into
levels with different access speeds and capacities.

Introduction to memory and memory units: Overview of memory types and units
used in computer systems.

Different Types of RAM (Random Access Memory): Various types of RAM
including SRAM, DRAM, and DDR RAM.

$& CODEBYTE

Buddy System: Memory allocation technique dividing memory into blocks of fixed
sizes to satisfy allocation requests.

Memory Management | Partition Allocation Method: Techniques for dividing memory
into sections for efficient process allocation.

Fixed (or Static) Partitioning in Operating System: Dividing memory into fixed-size
partitions, each assigned to a single process.

Variable (or Dynamic) Partitioning in Operating System: Dividing memory into
dynamically sized partitions to fit processes more efficiently.

Non-Contiguous Allocation in Operating System: Allocating memory in separate
blocks that are not physically contiguous.

Logical vs Physical Address in Operating System: Logical addresses are generated
by the CPU, while physical addresses refer to actual locations in memory.

Paging: A memory management scheme that eliminates the need for contiguous
allocation by dividing memory into fixed-size pages.

Requirements of Memory Management System: Ensuring efficient allocation,
protection, sharing, and organization of memory.

Memory Management - Mapping Virtual Address to Physical Addresses:
Translating virtual addresses to physical addresses using a page table.

Operating System | Remote Procedure call (RPC): Mechanism for interprocess
communication where a process can execute code in another address space.

Page Table Entries: Components in a page table that store mapping information
between virtual and physical addresses.

Virtual Memory: A technique that extends the available memory by using disk
space as additional RAM.

Memory Interleaving: A method to increase memory access speed by spreading
data across multiple memory modules.

$& CODEBYTE

Virtual Memory Questions: Common queries and explanations related to virtual
memory concepts and operations.

Operating System Based Virtualization: Creating multiple virtual environments on a
single physical machine using OS-level virtualization.

Inverted Page Table: A space-efficient page table where each entry corresponds to a
physical page frame.

Swap Space: Disk space used to extend physical memory and store inactive memory
pages.

Page Fault Handling: The process of retrieving data from disk to memory when a
requested page is not in RAM.

Fixed (or Static) Partitioning in Operating System: Same as above: Dividing memory
into fixed-size partitions, each assigned to a single process.

Segmentation: Dividing memory into variable-sized segments based on the logical
divisions of a program.

Program for Next Fit Algorithm in Memory Management: An algorithm that
searches for the next available block of memory to allocate to a process.

Overlays in Memory Management: A technique where only essential parts of a
program are loaded into memory to save space.

Page Replacement Algorithms: Methods to decide which memory pages to swap
out when new pages are needed.

Program for Page Replacement Algorithms | Set 1 (LRU): Implementation of the
Least Recently Used page replacement algorithm.

Program for Optimal Page Replacement Algorithm: An algorithm that replaces
the page that will not be used for the longest period of time.

LFU (Least Frequently Used) Cache Implementation: An algorithm that removes
the least frequently accessed items from the cache first.

$& CODEBYTE

Second Chance (or Clock) Page Replacement Policy: A page replacement algorithm
that gives pages a second chance before replacing them.

Techniques to Handle Thrashing: Methods to prevent excessive paging, which
degrades system performance.

Allocating Kernel Memory (Buddy System and Slab System): Techniques for
managing memory allocation within the kernel, using the buddy system and slab
allocator.

Program for Buddy Memory Allocation Scheme in Operating Systems | Set 1:
Implementation of the buddy system for dynamic memory allocation.

File Systems: Organized methods for storing and retrieving files on a storage device.

Unix File System: A file system used by Unix and Unix-like operating systems, known
for its simplicity and efficiency.

Implementing Directory Management Using Shell Script: Writing shell scripts to
create, manage, and navigate directories.

File Directory | Path Name: Describing the hierarchy of directories and the path
used to locate files.

Structures of Directory: Different ways to organize files within directories, such
as single-level, two-level, and hierarchical structures.

File Allocation Methods: Techniques for storing files on disk, including
contiguous, linked, and indexed allocation.

File Access Methods: Various methods for accessing data within a file, such as
sequential and direct access.

Secondary Memory: Non-volatile storage used for long-term data storage, like
hard drives and SSDs.

Secondary Memory - Hard Disk Drive: A magnetic storage device used for
storing large amounts of data permanently.

$& CODEBYTE

Disk Scheduling Algorithms: Algorithms to determine the order in which disk I/0
requests are processed to improve performance.

Program for SSTF Disk Scheduling Algorithm: Implementation of the Shortest Seek
Time First algorithm for disk scheduling.

What Exactly Spooling is All About?: Simultaneous peripheral operations online:
managing the queue of print jobs or data processing tasks.

Difference Between Spooling and Buffering: Spooling involves queuing tasks for
execution, while buffering temporarily stores data in transit.

Free Space Management: Techniques for managing unused space on a storage
device, including bitmaps and free lists.

$& CODEBYTE

Computer Network

Course _Overview: This course covers the
fundamental principles of Computer Networks,
including architectures, protocols, and security.
Students will learn about data communication,
network topologies, |IP addressing, and network
management. This foundation prepares students
for careers N network administration,
cybersecurity, and IT infrastructure management.

Topics Covered:

@ Introduction to Computer Networks: Overview of network fundamentals and their
significance.

@ Basics of Computer Networking: Core concepts and terminologies in networking.

@® Thelnternet and the Web: Understanding the structure and functionality of the
Internet and the World Wide Web.

@ Internet and Web Programming: Programming techniques for web applications and
internet services.

@ The New Internet (Internet of Everything): Exploring the interconnected nature of
modern devices.

$& CODEBYTE

Unknown Facts of Networking: Lesser-known but important aspects of networking.

Network Goals: Objectives and desired outcomes of networking systems.

Line Configuration: Various configurations for connecting devices in a network.

Transmission Modes: Different methods of data transmission (simplex, half-duplex,
full-duplex).

Types of Transmission Media: Physical media used for transmitting data (cables,
fiber optics, wireless).

Unicast, Broadcast, Multicast: Methods of data delivery in a network.

Network Topologies: The layout patterns of network connections (star, ring, mesh,
etc.).

Types of Networks (LAN, MAN, WAN): Classification of networks based on their
scope and scale.

Access Networks: Networks that connect subscribers to their service providers.

OSI Model: A conceptual framework used to understand network interactions in
seven layers.

TCP/IP vs OSI Model: Comparison between the TCP/IP and OSI| networking
models.

Flow Control Protocols: Mechanisms to control data flow between sender and
receiver.

Active Directory Domain Service: A directory service for managing network
resources in Windows environments.

$& CODEBYTE

Advantages and Disadvantages: Pros and cons of different networking technologies
and protocols.

Data Link Layer: Layer responsible for node-to-node data transfer and error detection.

Local Area Network (LAN) Technologies: Technologies used to create and manage
LANS.

Bridges, Internetworking: Devices and techniques for connecting multiple networks.

Framing, MAC Address, Filtering: Methods for data packet encapsulation and
addressing.

Multiple Access Protocols: Protocols that determine how multiple nodes share a
communication medium.

Byte Stuffing, Bit Stuffing: Techniques to avoid confusion with control information
in data streams.

Circuit Switching vs Packet Switching: Comparison of two data transmission
methods.

CSMA/CD, CSMA, Collision Avoidance: Protocols to manage data collisions on a
network.

Switching Techniques, VLAN: Methods to manage network traffic and create
virtual networks.

Sliding Window Protocol, ARQ: Techniques for reliable data transmission and
error handling.

Manchester Encoding, Error Detection: Methods for encoding data and detecting
errors.

Hamming Code, Wake-on-LAN: Error-correction code and technology to remotely
wake computers.

$ CODEBYTE
Basics of Wi-Fi, IEEE 802.11: Wireless networking standards and their basics.

Token Ring, Multiplexing: Network protocols and techniques to combine multiple
signals.

Network Layer: Layer responsible for data routing, forwarding, and addressing.

ISDN, IPv4, IPv6: Integrated Services Digital Network and Internet Protocol versions.

IP and Classful Addressing, Subnetting, Supernetting: Techniques for managing IP
addresses.

Classless Addressing: Addressing method without the traditional class constraints.

Fragmentation, ICMP: Breaking data into smaller packets and the Internet Control
Message Protocol.

Routing Protocols: Protocols used to determine the best path for data
transmission.

RIP, OSPF, EIGRP, BGP: Common routing protocols for network data flow
management.

VLAN, NAT, VRRP, HSRP: Network techniques for segmentation, translation, and
redundancy.

Traceroute, ARP, DHCP: Tools and protocols for network troubleshooting and
configuration.

DNS, SNMP, MIME: Protocols for domain name resolution, network management,
and email.

Transport Layer: Layer responsible for end-to-end communication and data
transfer.

$& CODEBYTE

TCP, UDP, Congestion Control: Core transport protocols and techniques to manage
network congestion.

Leaky Bucket Algorithm, Error Control: Techniques for managing data flow and
ensuring error-free transmission.

Sliding Window Protocol: Protocol to manage data frames between sender and
receiver.

Application Layer: Layer providing network services directly to end-users and
applications.

Protocols (SMTP, DNS, FTP, HTTP): Common application layer protocols for email,
domain resolution, file transfer, and web browsing.

P2P File Sharing, Quality of Service: Methods for direct file sharing and ensuring
network service quality.

Web Caching, Security: Techniques for optimizing web content delivery and
securing network data.

Firewalls, Cryptography, VPNs: Technologies for network security, data
encryption, and virtual private networks.

Compression Techniques: Methods for reducing data size for transmission.

LZW, Arithmetic Coding, Shannon-Fano: Specific data compression algorithms.

Network Experiments: Practical activities for understanding network operations.

Socket Programming, Checksum: Programming for network communication and
data integrity checks.

Troubleshooting Commands: Commands used to diagnose and fix network
Issues.

$& CODEBYTE

Devices: Overview of various networking devices and their functions.

Networking Devices, Routers, Switches: Devices used for managing and directing
network traffic.

Collision Domain, Broadcast Domain: Network areas affected by data collisions and
broadcasts.

Spanning Tree Protocol: Protocol to prevent loops in network topologies.

Cloud Computing, VolP, NFC: Technologies for remote computing, voice over IP, and
near-field communication.

USB, Type-C Port: Universal Serial Bus standards for connecting devices.

ARP & DHCP: Protocols for address resolution and dynamic host configuration.

Virtual Memory: Technique for extending physical memory using disk space.

$& CODEBYTE

Revision

Objective : To give an overall review of all topics
to improve understanding and prepare better for
tests or interviews.

Structure :

1.Quick Recap of Core Subjects:

e Summarize key concepts and terminologies from
Data Structures & Algorithms, DBMS, OOPs, OS,
and CN.

e Include quick-reference guides or cheat sheets
for each subject.

2. Topic-Wise Practice Sessions:

e Solve topic-specific questions, e.g., recursion
problems, DBMS normalization, or scheduling
algorithms.

e Focus on weak areas identified during learning.

$& CODEBYTE

3. Quick Recap of Core Subjects:

e Encourage peer learning by forming groups to
discuss and solve problems collaboratively.

4. Quiz:

e Conduct quizzes on fundamental concepts to
assess knowledge retention.

$& CODEBYTE

Mock Interviews

Objective : Simulate real-world interview
experiences to build confidence and identify
Improvement areas.

Structure :

1. Technical Mock Interviews:

e Focus on coding problems (DSA), system design,

and subject-specific technical questions (DBMS,
OOPs, etc.).

e Conduct sessions with experienced mentors or
industry professionals.

2. HR Mock Interviews:

e Practice answering common behavioral and
situational questions.

e Focus on communication skills, confidence, and
storytelling for past experiences.

$& CODEBYTE

3. Coding Rounds:

e Organize live coding challenges using platforms
like HackerRank or LeetCode.

e Include problems with varying difficulty to
simulate actual company coding tests.

4. Feedback and Analysis:

e Provide detailed feedback after every mock
Interview.

e Share insights on strengths, areas of
improvement, and strategies to enhance
performance.

5. Panel Discussions:

e Conduct mock interviews with a panel of
interviewers to replicate real-world scenarios.

6. Resume Review & Elevator Pitch:

e Refine resumes with mentor feedback.

e Practice delivering a concise and impactful
personal introduction.

$& CODEBYTE

Projects

Course Overview: This course emphasizes the
pivotal role projects play in students' educational
and professional journeys. Students will delve into
various project types, honing their practical skills
and bolstering their academic learning. By
mastering project execution and presentation,
students will be well-equipped to demonstrate
their capabilities to prospective employers,
fostering confidence and readiness for future
career endeavors.

$& CODEBYTE

Interview Preparation

Course Overview: This course prepares students
for job interviews by covering essential interview
techniques. Students will learn about common
interview questions, behavioral and technical
interview strategies, and how to effectively
present their skills and experiences. This
foundation equips students with the confidence
and knowledge needed to succeed in job
interviews and secure their desired positions.

Topics Covered:

@® DSA Questions to Crack Product Based Companies: Key data structures and
algorithms questions commonly asked in product-based company interviews.

@® DBMS Interview Questions: Essential database management system questions for
technical interviews.

@® OOPS Interview Questions: Important object-oriented programming questions
frequently encountered in interviews.

@® OSInterview Questions: Critical operating system questions for interview
preparation.

@ CN Interview Questions: Core computer networking questions asked in technical
interviews.

$& CODEBYTE

Pro Tips for Interviews & Coding Rounds: Expert advice on excelling in technical
interviews and coding assessments.

Resume Tips & How to Clear ATS: Guidance on crafting an effective resume and
passing applicant tracking systems.

$ CODEBYTE

FOR FURTHER INFORMATION
CONTACT US AT

foundersoffice@thecodebyte.in

growth@thecodebyte.in

mailto:growth@thecodebyte.in
mailto:foundersoffice@thecodebyte.in

